5,561 research outputs found

    Fast Authentication in Heterogeneous Wireless Networks

    Get PDF
    The growing diffusion of wireless devices is leading to an increasing demand for mobility and security. At the same time, most applications can only tolerate short breaks in the data flow, so that it is a challenge to find out mobility and authentication methods able to cope with these constraints. This paper aims to propose an authentication scheme which significantly shortens the authentication latency and that can be deployed in a variety of wireless environments ranging from common Wireless LANs (WLANs) to satellite-based access networks

    An Authentication and Key Establishment Scheme for the IP-Based Wireless Sensor Networks

    Get PDF
    Integration between wireless sensor networks and traditional IP networks using the IPv6 and 6LoWPAN standards is a very active research and application area. A combination of hybrid network significantly increases the complexity of addressing connectivity and fault tolerance problems in a highly heterogeneous environment, including for example different packet sizes in different networks. In such challenging conditions, securing the communication between nodes with very diverse computational, memory and energy storage resources is at the same time an essential requirement and a very complex issue. In this paper we present an efficient and secure mutual authentication and key establishment protocol based on Elliptic Curve Cryptography (ECC) by which different classes of nodes, with very different capabilities, can authenticate each other and establish a secret key for secure communication. The analysis of the proposed scheme shows that it provides good network connectivity and resilience against some well known attacks

    Fast Authentication in Heterogeneous Wireless Networks

    Get PDF
    The growing diffusion of wireless devices is leading to an increasing demand for mobility and security. At the same time, most applications can only tolerate short breaks in the data flow, so that it is a challenge to find out mobility and authentication methods able to cope with these constraints. This paper aims to propose an authentication scheme which significantly shortens the authentication latency and that can be deployed in a variety of wireless environments ranging from common Wireless LANs (WLANs) to satellite-based access networks

    MOON: a New Overlay Network Architecture for Mobility and QoS Support

    Get PDF
    The continuously increasing diffusion of mobile devices such as laptops, PDAs and smartphones, all equipped with enhanced functionalities, has led to numerous studies about mobility and to the definition of new network architectures capable to support it. Problems related to mobility have been addressed mostly operating on the network or transport layers of the Internet protocol stack. As a result, most of these solutions generally require modifying the TCP and/or the IP protocol. Although this approach is well suited to handle mobility, it lacks in compatibility with the Internet Protocol Suite. This consideration led us to study a fully TCP compatible and flexible approach we dubbed MOON, for MObile Overlay Network. This network architecture is currently under design at LIPAR, the Internet, Protocols and Network Architecture Lab of Politecnico di Torino

    Calibration and performance tests of the Very-Front-End electronics for the CMS electromagnetic calorimeter

    Get PDF
    The Very-Front-End electronics processing signals from photodetectors of the CMS electromagnetic calorimeter have been put through an extensive test programme to guarantee functionality and reliability. The final characteristics of the VFE boards designed for the calorimeter barrel and endcaps are presented. The results, which have been also verified during test beam at CERN, confirm the high quality of the boards production and show that the CMS detector specifications are reached

    Performance of a Tungsten-Cerium Fluoride Sampling Calorimeter in High-Energy Electron Beam Tests

    Full text link
    A prototype for a sampling calorimeter made out of cerium fluoride crystals interleaved with tungsten plates, and read out by wavelength-shifting fibres, has been exposed to beams of electrons with energies between 20 and 150 GeV, produced by the CERN Super Proton Synchrotron accelerator complex. The performance of the prototype is presented and compared to that of a Geant4 simulation of the apparatus. Particular emphasis is given to the response uniformity across the channel front face, and to the prototype's energy resolution.Comment: 6 pages, 6 figures, Submitted to NIM

    Multi physics modelling for a hybrid rocket engine with liquefying fuel: a sensitivity analysis on combustion instability

    Get PDF
    Hybrid rocket engines represent a promising alternative to both solid rocket motors and liquid rocket engines. They have throttling and restart capabilities with performance similar to storable liquids, but are safer and are low-cost. However, some drawbacks, such as low regression rate and combustion instability, are limiting their effective application. Paraffin-based fuels are a solution envisaged to face the low regression rate issue, and the capability to describe and predict combustion instability in the presence of liquefying fuels becomes an enabling step towards the application of hybrid rockets in next-generation space launchers. In this work, a multi physics model for hybrid rocket engines is presented and discussed. The model is based on a network of submodels, in which the chamber gas dynamics is described by a quasi-1D Euler model for reacting flows while thermal diffusion in the grain is described by the 1D heat equation in the radial direction. The need to introduce strong modelling simplifications introduces a significant uncertainty in the predictive capability of the numerical simulation. For this reason, a sensitivity analysis is performed in order to identify the key parameters which have the largest influence on combustion instability. Results are presented on a test case which refers to a paraffin-based grain burnt with hydrogen peroxide

    Crilin: A CRystal calorImeter with Longitudinal InformatioN for a future Muon Collider

    Full text link
    The measurement of physics processes at new energy frontier experiments requires excellent spatial, time, and energy resolutions to resolve the structure of collimated high-energy jets. In a future Muon Collider, the beam-induced backgrounds (BIB) represent the main challenge in the design of the detectors and of the event reconstruction algorithms. The technology and the design of the calorimeters should be chosen to reduce the effect of the BIB, while keeping good physics performance. Several requirements can be inferred: i) high granularity to reduce the overlap of BIB particles in the same calorimeter cell; ii) excellent timing (of the order of 100 ps) to reduce the out-of-time component of the BIB; iii) longitudinal segmentation to distinguish the signal showers from the fake showers produced by the BIB; iv) good energy resolution (less than 10%/sqrt(E)) to obtain good physics performance, as has been already demonstrated for conceptual particle flow calorimeters. Our proposal consists of a semi-homogeneous electromagnetic calorimeter based on Lead Fluoride Crystals (PbF2) readout by surface-mount UV-extended Silicon Photomultipliers (SiPMs): the Crilin calorimeter. In this paper, the performances of the Crilin calorimeter in the Muon Collider framework for hadron jets reconstruction have been analyzed. We report the single components characterizations together with the development of a small-scale prototype, consisting of 2 layers of 3x3 crystals each

    E835 at FNAL: Charmonium Spectroscopy in pˉp\bar p p Annihilations

    Get PDF
    I present preliminary results on the search for hch_c in its ηcÎł\eta_c\gamma and J/ψπ0J/\psi\pi^0 decay modes. We observe an excess of \eta_c\gammaeventsnear3526MeVthathasaprobability events near 3526 MeV that has a probability {\cal P} \sim 0.001toarisefrombackgroundfluctations.Theresonanceparametersare to arise from background fluctations. The resonance parameters are M=3525.8 \pm 0.2 \pm 0.2 MeV,MeV, \Gamma\leq1MeV,and 1 MeV, and 10.6\pm 3.7\pm3.4(br) < \Gamma_{\bar{p}p}B_{\eta_c\gamma} < 12.8\pm 4.8\pm4.5(br) eV.WefindnoeventexcesswithinthesearchregionintheeV. We find no event excess within the search region in the J/\psi\pi^0$ mode.Comment: Presented at the 6th International Conference on Hyperons, Charm and Beauty Hadrons (BEACH 2004), Chicago(Il), June 27-July 3,200
    • 

    corecore